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The two diametrically opposed tendencies of the thinking mind,
the ideas of creative progress and summary completion, which
form also the basis of Kant’s “antinomies”, find their symbolic
representation as well as their symbolic reconciliation in the
transfinite number series, which rests upon the notion of
well-ordering and which, though lacking in true completion on
account of its boundless progressing, possesses relative way
stations, namely those “boundary numbers”, which separate the
higher from the lower model types. .

Zermelo (1930), p431.

In his Grundlagen einer Allgemeinen Mannigfaltigkeitslehre, Cantor intro-
duces two principles of infinity. The first principle lets one create potential
infinities—never ending series of larger transfinite numbers. The second tells
us that to every potentially infinite series there corresponds a complete infin-
ity. However, integral to Cantor’s picture is the idea that these two processes
of creation and completion can be continued forever. This line of thinking has
been very influential in the philosophy of set theory, but has also remained
fraught. In this article I explore, in the framework of higher-order logic, one
particularly flatfooted articulation of the idea drawing inspiration from some
remarks of Zermelo.

The paper is organized as follows. I begin, in section 1, by offering a
higher-order (as opposed to a modal) analysis of Aristotle’s notion of a po-
tential infinity, and by relating this to Cantor’s two principles of generation.
In section 2 I turn to the idea of indefinite extensibility, as it applies to the
notion of well-order and a ZF relation. Following some remarks of Zermelo
I formulate purely logical principles, in higher-order logic, stating that every
well-order or ZF relation can be extended, and that any sequence of well-orders
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or ZF relations has a completion. An alternative modal articulation of these
ideas is shown to be subject to a modal version of the Burali-Forti paradox.
Section 3 discusses the incompatibility between these higher-order indefinite
extensibility principles and a higher-order well-ordering principle, and argues
that certain weakenings, such as the idea that the sets of any ZF relation are
well-orderable, are both consistent and supported in Cantor’s early writings
by the idea that some things form a set when they can be listed (even if only
in a potentially infinite list). In section 4 higher-order logics that contain these
extensibility principles are defined, and are shown to be consistent using el-
ementary methods (i.e. without forcing). In the final section, I turn to the
more general question of whether one needs to posit special first-order entities
— like sets, transfinite numbers, and so on — to represent the structure of the
higher-order. It is argued that we do not need special purpose entities to rep-
resent the higher-order, and that the Zermelian logics developed are especially
useful for developing this view for they remove dangling questions concerning
the size of the universe that would have to be answered if the universe could
be well-ordered. The appendix explores a Cantor-inspired set theory in which
to be a set is just to be well-orderable.

1 Higher-Order Formulations of the Potentially

Infinite

Aristotle famously drew a distinction between potential infinities and com-
pleted infinities, rejecting the latter but not the former. The best way I can
think of to spell this out employs second-order or plural resources.1 An ex-
ample of a potential infinity might include a series of stretches of time of
increasing length, t1, t2, t3, ..., each properly including its predecessors. Every
initial segment of this series can be counted or listed and its members are
in good standing by Aristotle’s lights, but according to Aristotle there is no
single individual, an infinite stretch of time, that includes them all as parts;
this would be a completed infinity. This situation is perfectly consistent pro-
vided we reject the mereological principle that any things whatsoever compose
a whole. The stretches of time together are potentially infinite, but none of
them alone, nor any finite number of them together are potentially infinite. At
a first parse, being potentially infinite is an irreducibly plural, or irreducibly
third-order, property. To posit a completed infinity is to posit a single individ-
ual that contains, or stands in some other similar relation, all those things at

1Rosen (2021).
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once. In Aristotle the concept of potential infinity is usually applied to things
that are ordered by some sort of part-whole relation, <t, and so is naturally
represented by a higher-order predicate that can combine with a binary pred-
icate to form a sentence: that every one of our times bears <t to another.
In general this only guarantees infinitude when the relation in question is a
strict order, i.e., a transitive irreflexive relation. We thus define the relevant
higher-order predicate as follows, writing ∀e for the first-order quantifier:

PotInf R := ∀ex(DomRx → ∃eyRxy) ∧ SOR

writing DomRx for ∃ey(Rxy ∨ Ryx) (“x is in the domain or R”) and SO for
∀exyz(Rxy ∧ Ryz → Rxz) ∧ ∀ex¬Rxx ∧ ∃exyRxy (“R is a non-empty strict
order”).

We can capture the potential infinity of the stretches of time t1, t2, ... by
ascribing this predicate to <t, the parthood relation restricted to those times.
In doing so we are not saying that there is a series t1, t2, ... that is potentially
infinite. For otherwise Aristotle’s position seems to be incoherent: if one can
have potentially infinite series, like t1, t2, t3, ..., don’t we also have an actually
infinite individual, namely the infinite series itself? The higher-order nature
of our formulation is thus essential here. It is hard to see how a first-order
predicate, ‘is a potential infinity’, could take its place, for if the potentially
infinite required, in addition to the times t1, t2, ..., a further individual—a
potential infinity—to be the logical subject of this predicate, whether it be a
series or something else, it seems we are committed to something relevantly
like a completed infinity.

We will take this idea as our starting point and not—as many have assumed—
an irreducibly modal analysis of the potentially infinite.2 In order to theorize
in a sufficiently general way, it is consequently necessary to introduce ‘higher-
order’ quantifiers that can generalize into the position occupied by predicates
as well as names. As we wrote ∃e for quantifiers binding into name posi-
tion, we write ∃(e) and ∃(ee) for quantifiers binding into unary and binary
predicate position, and so on (in general, ∃(σ1...σn) for quantification into the
position of an n-ary relation between things of types σ1, ..., σn). Thus, writ-
ing Fa for ‘Socrates is wise’ we can generalize both into the position of the
name ‘Socrates’ and into the position of the predicate ‘wise’, so that not only
∃exFx but also ∃(e)X Xa follows from Fa by existential generalization. As
I will understand it, ∃(e) is a device for generalizating in predicate position
and not a first-order quantifier over properties, sets or classes. ∃(e)X Xa does
not entail that Socrates instantiates some property, for Socrates is wise does

2See, for instance, Lear (1980) and Linnebo and Shapiro (2019).
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not entail that there are any properties, and by the transitivity of entailment,
nothing that Socrates is wise entails does either, including the two immediate
consequences of Fa, ∃xFx and ∃X Xa, mentioned above.3 Nonetheless, I will
follow the convention of pronouncing ∃(e) and ∃(ee) as ‘some property’ and
‘some relation’ respectively, to avoid overly formal prose.

Applying this to our previous remarks: the existence of the potentially
infinite, expressed with a second-order existential, may commit us to infinitely
many individuals, but not to an infinite individual. Given that we are un-
derstanding ∃(ee)RPotInf R as expressing existential generality in the position
of a binary predicate, it does not commit us to any completed infinite en-
tities like sequences, infinite relations or infinite domains of such relations.
∃(ee)R∀ex∃eyRxy is entailed by ∀ex∃ey.x <t y, the claim that for every stretch
of time there is a strictly longer stretch, by existentially generalizing into the
position that the binary predicate ‘is strictly longer than’ occupies. We have
just argued that this claim does not entail that there are any individuals other
than finite stretches of time, so neither do any weaker claims it entails.

Cantor famously embraced completed infinities. In his Grundlagen (Can-
tor (1883)) he states two principles of generation for ‘creating’ infinities. The
first principle of generation—which I will simply call Successor—ensures that
one can always create a potential infinity by adding one to a sequence: “the
principle of adding a unity to an already formed and existing number”.4 The
second principle of generation—which I will call Limit—ensures that from any
potential infinity one can always create a completed infinity: “if any definite
succession of defined integers is put forward of which no greatest exists a new
number is created by means of this second principle of generation, which is
thought of as the limit of those numbers; that is, it is defined as the next num-
ber greater than all of them”. Cantor’s principles do not apply to stretches
of time but to special mathematical objects—‘transfinite numbers’, or ‘ordi-
nals’, ordered by a relation <Ω—which are governed by these principles. These
transfinite numbers are totally ordered by <Ω—that is they are strict orders
in the previously defined sense such that ∀exy(Rxy ∨Ryx∨ x = y). We write
this Tot <Ω. Writing Ord for Dom <Ω we might axiomatize Cantor’s theory
by adding to the principle that the ordinals are totally ordered:

Successor

∀ex(Ordx → ∃ey(Ord y ∧ Sucxy))

3For more on this way of understanding higher-order generalizations see, for instance,
Prior (1971), Williamson (2003), Trueman (2020), Bacon (forthcomingb).

4Ewald (1996) p907.
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Limit

∀(e)X((∀ey(Xy → Ord y) → ∃ey(Ord y ∧ LUBXy)

Where
x ≤Ω y := x = y ∨ x <Ω y

UBXy := ∀ex(Xx → x ≤Ω y)

LUBXy := UBXy ∧ ∀ez(UBXz → y ≤Ω z)

Sucxy := LUBλz(z <Ω y)x

The ordinals are closely related to the notion of a well-order, a notion also
introduced into mathematics by Cantor. A totally ordered relation, R, is
well-orderd iff R there is always an R least individual among any DomR
individuals:

WOR := TotR∧∀(e)X(∃yXy∧∀ey(Xy → DomRy) → ∃ex(Xx∧∀ey(Xy → x = y∨Rxy)))

It is easy to prove from Cantor’s principles that the transfinite numbers are
well-ordered.5 Arguably for Cantor, the notion of a well-order is prior to that
of a transfinite number: in later work, a transfinite number is an abstraction
from the notion of a well-order—transfinite numbers represent the order-types
of well-orders.6

Unfortunately Cantor’s two principles of generation, if left unrestricted,
lead to the Burali-Forti paradox.7

Cantor was aware of the paradox prior to Burali-Forti8, and describes it
quite clearly in a letter to Hilbert (here is is applying his principle to the alephs

5Given some ordinals, X, consider the property of not being strictly greater than any X:
λz¬∃ey(Xy ∧ y <Ω z). Its least upper-bound will be a minimal element of X.

6p86 of and pp111-112 Cantor (1915).
7Cantor does in fact restrict them—in the Grundlagen he has a ‘principle of limitation’

which is presumably supposed to weaken the second principle, but it is a little bit hard to
interpret: it states “a new integer could be made with the help of one of the two other
principles of creation only if the totality of all previous numbers had the power of a defined
number-class which was already in existence over its entire extent.” One natural interpreta-
tion of this requires that X, in the antecedent of the second principle, be no bigger than the
power of any ordinal in it (i.e. add ∃ey(Xy∧X ∼= λZ∀ez(Zz → z ≤Ω y) to the antecedent of
the second principle; ∼= denotes equinumerosity between types (e) and ((ee)), see 24). This
restricted principle has a model where <Ω is interpreted by the ordering on an strongly
inaccessible cardinal (including, as trivial case, ω).

8The fact that Cantor introduces the ‘principle of limitation’ in the Grundlangen strongly
suggests that he was aware of a problem in with the unrestricted use of the second principle
of generation in 1883 (see Menzel (1984))..
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rather than the transfinite ordinals, but the argument is essentially the same
in any case):

The totality of alephs is one that cannot be conceived as a deter-
minate well-defined, finished set. If this were the case, then this
totality would be followed in size by a determinate aleph, which
would therefore both belong to this totality (as an element) and
not belong, which would be a contradiction. (Letter from Cantor
to Hilbert, 26 Sept 1897, translated in Ewald (1996).)

After Hilbert points out that the alephs are perfectly determinate and well-
define, Cantor insists that it is the notion of being finished that is of central
importance:

One must only understand the expression ‘finished’ correctly. I say
of a set that it can be thought of as finished [...] if it is possible
without contradiction [...] to think of all its elements as existing
together, and so to think of the set itself as a compounded thing
for itself, or[...] if it possible to imagine the set as actually existing
with the totality of its elements.

This is not so different from Aristotle’s notion of an actual infinity—the finite
stretches of times cannot be brought together into a single infinite stretch.
Cantor’s position is that the ordering <Ω is not a finished order and so is
a potential infinity, in the higher-order sense defined earlier, that cannot be
completed (unlike the proper initial segments of <Ω).

But in what sense can’t<Ω be completed? It is potentially infinite (PotInf <Ω

is essentially what Successor says), but then so is the ordering of the finite num-
bers, <ω, and this is completable by Cantor’s lights. If there is an individual
a that is not a transfinite number we can always extend <Ω by adding one
of these individuals to the end—x <Ω+1 y iff x <Ω y or Ordx and y = a—
and even if we run out of individuals we can always extend the order “up to
isomorphism” by removing the least element9, call it 0, from the bottom and
moving it to the top.

Cantor’s answer to this question is that the ordinals cannot be ‘enumer-
ated’, in Cantor’s extended sense. Cantor sometimes takes the enumerability
of some things to simply mean they can be well-ordered. However the transfi-
nite numbers are provably well-ordered.10 Here it seems he takes enumerability

9Whose existence is guaranteed by the fact that <Ω is well-ordered
10The are well-ordered by the relation α < β := ∃(ee)RS(OrdTypeαR∧OrdTypeβS∧R <

S.
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to mean something that can be assigned a transfinite number: that is to say,
to be enumerable is to be well-ordered by one of those well-orders having one
of these special individuals representing its order-type.11 Taken as an expla-
nation for why certain well-orders are unfinished and cannot be assigned an
ordinal representative, and others can, this is patently circular. And so it
remains mysterious why some potentially infinite series correspond to com-
pleted infinities—can be assigned a transfinite number as order type—and
others cannot.12

More troubling for this explanation is the fact that there is nothing in-
consistent about a theory that assigns <Ω a transfinite number: if the proper
initial segments of <Ω can consistently be assigned individuals as order-types,
we can create a new way of representing order-types by individuals that does
assign <Ω an order-type by, as it were, ‘making room in Hilbert’s hotel’—i.e.
shifting the individuals representing the finite order types up by one, and as-
sign <Ω what used to be playing the role of 0. So it’s just not true that Ω
can’t be enumerated—we could assign it an individual representing its ordered
type if we wanted—it’s simply that Ω isn’t enumerated by Cantor’s particular
way of doing it. (When we move from order-type to cardinality we find other
authors adopting different representations: Frege, for instance, put forward a
different (and consistent–see Boolos (1987)) theory of cardinality to Cantor
based on Hume’s principle: according to this any things whatsoever are be
assigned an individual as number, including the totality of all things.)

This state of affairs is somewhat unsatisfactory. For according to this the-
ory, we have a whole host of perfectly good well-orders that are not represented
by any of Cantor’s transfinite numbers. As noted above, not only do we have
the ordering on the ordinals, <Ω, but we also have <Ω+1, the ordering obtained
from the ordinals by removing the 0 from the beginning, and appending it to
the end, and this can be continued indefinitely. In fact, the well-orders con-
tinue for quite a bit longer from <Ω onwards than they do before it. There are
strictly more well-orderings that cannot be assigned ordinals than there are
well-orders that can, a fact that is essentially the result of turning the Burali-

11Quite possibly he conflated these two things in the Grundlagen because he was not
aware of the Burali-Forti paradox, so that this is not really a change of meaning but a
precisification on one of the two things it could have been taken to mean.

12Another principle sometimes discussed in this context is the principle of limitation of
size: that things equinumerous with the entire universe are to big to form a set. I cannot
find it articulated like this in Cantor, but Hallett (1991) p176 describes this as a ‘spiritual
descendent’ of Cantor’s theory. This principle that one can assign something a transfinite
number only if it is smaller than the universe is less obviously circular, but still smacks of
something that is motivated only by the fact that it avoids inconsistency.
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Forti paradox into a theorem of higher-order logic. In what sense, then, is Ω
absolutely infinite? How is <Ω, for instance, any different from well-orders of
the first transfinite order-type ω, which can be continued ω + 1, and so on.
Why does Cantor stop representing well-orders by special individuals at the
order-type Ω and not Ω + 1? The problem with any (consistent) theory that
attempts to represent the order-types of well-orders by individuals is that they
inevitably confront a charge of arbitrariness.

2 Higher-Order Formulations of Indefinite Ex-

tensibility

Why postulate special individuals to represent the different order-types of
well-orders at all if not all the well-orders can be represented? Why not just
formulate principles and reason with the well-orders themselves and forget
about trying to find special individuals to represent their order types?

Let us return to our general definition of a potential infinity. In some sense
the the completion of a potential infinity, R, is an individual, a, that can be
placed ‘above’ each of the individuals in the domain of R. a is not itself in the
domain of R, or else R would not be a potential infinity and a would not be
above all the DomR elements (nothing can be above itself). We must think
of R being extended by a to make another well-order, R+a, that includes a in
its domain as lying above each of the elements of R. Although we have only
talked of individuals as completed infinities—a in this case—there’s also an
extended sense in which R+a itself can be thought of a completion of R. Note,
of course, that in this general sense R can be completed in multiple different
ways. Cantor appears to get into trouble by assuming that there is a particular
relation, <Ω, (defined on special individuals, the transfinite numbers), when
it seems that any well-order, <Ω included, can be extended.

I want to put explore the idea that the notion of a well-order is ‘indefinitely
extensible’ in a way that goes beyond what both Aristotle and Cantor have
put forward. The only way I can think to formulate the indefinite extensibility
of the notion of a well-order is not to formulate it in terms of some particu-
lar well-order, <Ω, which must already have some particular order-type, but
by higher-order quantification over well-orders. These are, in a loose sense,
higher-order analogues of Cantor’s two principles of generation. We have the
principle that every well-order can be extended by one, and for every sequence
of well-orders ordered by the initial segment relation has a well-order contain-
ing them as initial segments. To make these easier to state we introduce some
abbreviations. Being an initial segment is a higher-order relation defined as
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follows:
R ≤ S := ∀x(DomRx → ∀y(Ryx ↔ Syx)

R is a proper initial segment of S, written R < S, when R ≤ S but S ̸≤ R.
We will later apply these definitions to arbitrary relations. We will say that a
higher-order property of relations, X of type ((ee)), is linearly ordered by ≤
iff

LinX := ∀(ee)RS(XR ∧XS → R ≤ S ∨ S ≤ R)

We’ll say that a relation R is an upperbound of X iff

UBRX := ∀(ee)S(XS → S ≤ R)

With these abbreviations in place we may formulate the two principles as
follows.

Successor (Higher-Order)

∀(ee)R(WOR → ∃(ee)S(WOS ∧R < S))

Limit (Higher-Order)

∀((ee))X((LinX ∧ ∀(ee)R(XR → WOR)) → ∃(ee)T (WOT ∧ UBRX))

If these principles are consistent they imply that every well-order can be ex-
tended by one, even<Ω. One can repeat this indefinitely to obtain a potentially
infinite well-order that can be completed by the second principle.13

Indeed, we seem to find this conception of indefinite extensibility in Zer-
melo. In 1908 Zermelo introduced and axiomatized the iterative conception of
sets, according to which they are built up in stages V0, V1, ... in a well-ordered
sequence much lik Cantor’s theory of transfinite ordinals. One can always add
a stage, Vα+1, by taking the powerset of the previous stage Vα (the set con-
taining all its subsets), and given a sequence of stages Vα ordered by inclusion
one can take their ‘limit’ by unioning them together.14

13In fact, the second principle is a theorem of a minimal higher-order order logic–if X is
a collection of well-orders linearly ordered by ≤, Rxy := ∃(ee)S(XS ∧ Sxy) will complete
them. However, it is useful to state in its own right because later we will consider variants
of the principle.

14Like with Cantor’s principles this is inconsistent if applied unrestrictedly; in order to
maintain consistency, like Cantor’s principle of limitation (see footnote 7), this principle is
restricted to sequences of stages that can be indexed by a set that already exists; this latter
idea is essentially due to Fraenkel.
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Zermelo was theorizing in a higher-order language with a single non-logical
binary predicate ∈.15 In this language Zermelo axiomatized the iterative con-
ception of sets theory with a finite list of axioms, the conjunction of which
we will call ZF∈. By replacing the membership predicate in this axiom with
another binary predicate, R, we can formulate the claim that R satisfies Zer-
melo’s conditions ZFR. In this way we obtain a purely logical predicate, ZF,
allowing us to talk about ZF relations in general.

In Zermelo (1930), Zermelo distances himself from the idea that there is
a special ZF relation, ∈, about which set theory is concerned. Just like <Ω,
Zermelo maintains that any ZF relation—∈ included—can be extended to
more inclusive ZF relations. Instead of fixating on one particular ZF relation
he takes up the the investigation of ZF relations in general: a project that can
be undertaken in the purely logical language of higher-order logic, without any
set-theoretic primitives.

Zermelo’s picture was that every ZF relation is properly included in a larger
one, and any collection of ZF relations ordered by inclusion are included in
some ZF relation—there is no special relation ∈, which is itself indefinitely
extensible. This is what Zermelo says: 16

Let us now put forth the general hypothesis that every categorically
determined domain can also be conceived of as a “set” in one way
or another; that is, that it can occur as an element of a (suitably
chosen) normal domain. It then follows that there corresponds
to any normal domain a higher one [...] Likewise, a categorically
determined domain of sets arises through union and fusion from
every infinite sequence of different normal domains [...] where one
always contains the other as a canonical segment.

For Zermelo a ‘normal domain’ for Zermelo is the domain of a ZF-relation
R, and a ‘domain’ a collection contained in a normal domain. This allows
Zermelo to avoid the problems associated with inconsistent multiplicities. As
Geoffrey Hellman puts it, according to Zermelo “set theory should be seen,
not as the theory of a unique, all-embracing structure, but instead as a theory

15Zermelo follows the terminology of Whitehead and Russell (1910-1913), who are more
explicit about the fact that second-order quantifiers bind into predicate position. Zermelo
by contrast talks informally, using Russell’s term ‘propositional function’ when higher-order
quantification is intended.

16Below I suppress several qualifications Zermelo makes regarding differences between ZF
relations that purely concern urelements, as they are not relevant to our present discussion
of pure sets.
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of an endless infinity of intimately related structures.”17

Of course, underlying this is the thought that well-orders themselves are
indefinitely extensible. Of the transfinite numbers, Zermelo writes that they
rest

upon the notion of well-ordering and which, though lacking in true
completion on account of its boundless progressing, possesses rela-
tive way stations, namely those “boundary numbers” [i.e. inacces-
sibles], which separate the higher from the lower model types.

If we flatfootedly formalize Zermelo’s two remarks in higher-order logic we
obtain the following pair of principles: every ZF relation is a proper initial
segment of some other ZF relation, and (ii) whenever you have some ZF re-
lations ordered under initiality there is a ZF-relation containing them all as
initial segments. Writing R < S for R ≤ S ∧ S ≰ S:

Progress ∀(ee)R(ZFR → ∃(ee)S(ZFS ∧R < S))

Completion ∀((ee))X(LinX∧∀(ee)R(XR → ZFR) → ∃(ee)T (ZFT ∧UBTX))

The idea that the ordinals are indefinitely extensible leads to a variant pair
of principles about well-orders: every well-order of inaccessible order type is
a proper initial segment of another such relation, and any collection of well-
orders that are linearly ordered by ≤ are initial segments of some well-order
of inaccessible order type.18

ProgressWO ∀(ee)R(InaccessibleR → ∃(ee)S(InaccessibleS ∧R < S))

CompletionWO ∀((ee))X(LinX∧∀(ee)R(XR → WOR)) → ∃ρT (InaccessibleT∧
UBTX))

Of course, this harkens back to Cantor’s principles of generation, that one
can add one to any transfinite number, and given any sequence of transfinite
numbers we can find the least number which is greater than them all.

Zermelo’s remarks capture an attractive, but somewhat elusive idea. Many
philosophers have been seduced by this picture of the set theoretic hierarchy

17Hellman (1989) p56. Hellman does not think Zermelo is successful in resolving the
tension, essentially because Hellman thinks the only way to make sense of the relevant
higher-order quantification is in terms of singular quantification over proper classes.

18The notion of inaccessible can be defined in pure higher-order logic. It an be obtained
by λing out <Ω from Cantor’s theory of ordinals: i.e. InaccessibleR means TotR, and the
two principles of generation, with the principle of limitation included (see footnote 7), hold
of R.
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as indefinitely extensible, but have had trouble articulating the idea precisely.
Common to these formulations is the assumption that there is a distinguished
relation, ∈, or in the case of the ordinals <Ω, and it is this relation that is said
to be indefinitely extensible, or not as the case may be. (This is picture, it
should be noted, is on its face importantly different from Zermelo’s; for Zermelo
it is the higher-order property of being a ZF relation or being a well-order that
are indefinitely extensible.)

Let’s consider (briefly) two major attempts to express the indefinite exten-
sibility of particular relations, such as ∈ and <Ω. According to some authors,
one must give up on the idea that we can quantify unrestrictedly. Each quan-
tifier gives us a restricted view of the totality of ordinals, as it were, and from
no viewpoint can we see them all at once.19 But to say that a given quanti-
fier is restricted we do so by another quantificational claim: we mean there
is something not in its range. This is only true if this new quantificational
claim ranges more widely than the the original one, and if it too is restricted
this can only be articulated by a yet wider quantifier. Zermelo was staunchly
against this sort of relativism:

In general, the concept of “allness”, or “quantification”, must lie at
the foundation of any mathematical consideration as a basic logical
category incapable of further analysis. If we were to restrict the
allness in a particular case by means of special conditions, then we
would have to do so using quantifications, which would lead us to
a regressus in infinitum. Zermelo (1931).

Whether this regress is troublesome remains to be seen, but it does bring to
salience a difficulty. How should the quantifier relativist state their positive
view that every first-order quantifier is restricted? Presumably they should
do this by quantifying into the position of a first-order quantifier—but if this
higher-order quantifier is also restricted, it fails to have the required force. And
if the higher-order ‘quantifier quantifier’ is unrestricted then one can define an
unrestricted first-order quantifier: absolutely everything is F when F satisfies
every first-order universal quantifier.20

Other philosophers, following Charles Parsons, have suggested that the
indefinite extensibility of ∈ or <Ω must be glossed in inherently modal terms.21

These authors typically produce modal formulations of the idea that ∈ or <Ω

19See the papers in Rayo and Uzquiano (2006).
20See Williamson (2003) for a discussion of related problems.
21Parsons (1983). This idea is developed further in Linnebo (2013), and in several subse-

quent papers of his; a different formalization of the modal idea based on tense logic is given
in Studd (2013).
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may always be extended—the analogue of Cantor’s first principle of generation,
Successor. Applied to the ordinals this can be stated as follows:

Successor (Modal)

2∀ex(Ordx → 3∃ey(Ord y ∧ x <Ω y))

writing Ord for Dom <Ω. But surely just as essential to the picture of the
ordinals as extendible by the successor operation is this idea of their being ex-
tendible by taking limits, captured in Cantor’s second principle of generation,
Limit. After all, the unmodalized version of the above principle—obtained by
deleting all modal operators—is just PotInf <Ω. Not only can this idea be
perfectly consistently captured without modal operators, it fails to distinguish
<Ω from the ordering of the finite ordinals, <ω, which we do not think of as
being indefinitely extensible. What would the modal analogue of the second
principle amount to then? Intuitively, whenever we have a property of ordi-
nals picking out ordinals across worlds (not just a single world) it should be
possible for there to be an ordinal that is necessarily at least as big as each of
them.

Limit (Modal)

2∀(e)X(2∀ey(Xy → Ord y) → 3∃ex(Ordx ∧2∀ey(Xy → y ≤Ω x))

Unfortunately these two principles are straightforwardly inconsistent, assum-
ing that the ordinals are necessarily well-ordered. The two modal principles
are very straightforward modalizations of Cantor’s principles of generation,
and they are no better than them — the inconsistency is obtained by modal-
izing the Burali-Forti paradox. Plugging Ord into X in the second principle
we get the possibility of an ordinal, x, that is necessarily at least as big as
every ordinal, but then the first principle implies the possibility of an ordinal
strictly bigger than x.

Thus the modal extensibilists must, like Cantor, give up on Limit in its
unrestricted form. Like Cantor, then, they are committed to a similar kind
of arbitrariness concerning when we stop numbering well-orders. This time
we are not just concerned with relations that well-order in extension, but
‘modal well-orders’. Roughly speaking, a relation such that, if you laid out its
extensions at each possible world, they would all be well-orders related to one
another by the initial segment relation. More precisely, a modal well-order is a
relation R that: (i) is necessarily a well-order, (ii) cannot shrink across modal
space–if it relates x to y it does so necessarily, and (iii) can only expand in
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the upwards direction of the order–if y is already in the domain of R, and R
doesn’t relate x to y then it necessarily doesn’t relate x to y.

WO2R :=2WOR∧
2∀exy(Rxy → 2Rxy)∧
2∀exy(¬Rxy ∧DomRy → 2¬Rxy)

Like well-orders, one modal well-order can be said to be an initial segment of
another. Because modal well-orders can expand at different rates and yet still
amount to the same ordering of individuals across all of modal space, we say
that one modal well-order is equivalent to an initial segment of another when
it is necessarily possible that it is isomorphic to an initial segment of the other
(here ⪯ is the notion of one order being isomorphic to an initial segment of
another which we will define shortly):

R ⪯2 S := 23R ⪯ S

While every modal well-order that doesn’t ‘expand’ can possibly be assigned an
individual as order type, these are only a very special kind modal well-order.22

Some modal well-orders are not possibly assigned an order type.23 As before,
the point at which the modal well-orders stop being possibly represented will
depend on ideosyncratic features of the choice of representation, and as before,
there will be far more unrepresented modal well-orders than represented ones,
whatever representation one uses.

3 The Well-Ordering Principle

The reader with an eye for paradoxes might wonder whether Zermelo has not
committed himself to the Burali-Forti paradox. Zermelo seems to recognise
the tension, and likens the principles to a Kantian antinomy of ‘progress’ and
‘completion’, from the epigraph. Zermelo does not, however, formalize or
otherwise develop his remarks.

22A non-expanding relation is a persistent relation that additionally doesn’t acquire new
relata—see the notion of ‘Rigidity’ defined in Bacon and Dorr (forthcoming).

23Here is the reason, in sketch. If there is a way of assigning possible individuals to
represent possible modal well-orders, then those individuals can be ordered according to
whether the modal well-orders the represent bear the ⪯2 to each other. This ordering
itself is a modal well-ordering that cannot be represented by that particular representation,
although it may be assigned a representations by other representations of the modal well-
orders.
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Let’s begin by noting that if we were to replace ≤, the relation of being an
initial segment of, with the relation of being isomorphic to an initial segment
of, we do indeed get an inconsistency from any of our principles.24 Let X
be the property of being a well-order. It is easily show that well-orders are
linearly ordered (indeed well-ordered) by ⪯, and so by the variant of Limit,
there must be a well-order R, containing an initial segment isomorphic to any
well-order.25 But then by the variant of Successor, there is a well-order R+ that
has a proper initial segment isomorphic to R, and thus any well-order relation
is isomorphic to a proper initial segment of R+. This includes R+ itself, a
contradiction! The inconsistency extends to variants of Zermelo’s principles
with ⪯ replacing ≤: this time we must appeal to a theorem proved by Zermelo
himself, that ZF relations are linearly ordered by ⪯.

However, the parallel argument involving ≤ does not go through, for the
totality of ZF relations and well-orders are not linearly ordered by the initial
segment relation. Nor, without further assumptions, do we have a guarantee
that we can find a maximal chain of well-orders under the initial segment
relation. (Indeed, that on the official reading, the higher-order version of Limit
is in fact a theorem of a minimal higher-order logic, for ifX contains well-orders
that are linearly ordered under ≤ then the relation Sxy := ∃(ee)R(XR∧Rxy)
is a well-order extending each relation in X.26)

One could obtain a contradiction if we instead assumed a higher-order
version of the well-ordering principle (an equivalent of the higher-order axiom
of choice, see Shapiro (1991) ).

The Well-Ordering Principleσ ∃(σσ)R(WOR ∧ ∀σxDomRx)

Completion tells us that every chain of ZF relations ordered by ≤ has an
upperbound that is also a ZF relation, and so by Zorn’s lemma—a consequence

24We define this relation as follows

BijRXY := ∀ex(Xx → ∃e!y(Y y ∧Rxy) ∧ ∀ey(Y y → ∃e!x(Xx ∧Rxy)

R ∼= S := ∃T (BijT (DomR)(DomS) ∧ ∀xyx′y′(Txx′ ∧ Tyy′ → (Rxy ↔ Sx′y′))

R ⪯ S := ∃T (T ≤ S ∧R ∼= S)

.
25Note that our definitions of linear order are suitable for preorders, and do not build

in antisymmetry. ⪯ is not antisymmetric, since one have distinct but isomorphic relations,
whereas ≤ is antisymmetric.

26When read in terms of ⪯, the situation is reversed: Limit becomes the key ingredient
of the Burali-Forti paradox, Successor is not quite a theorem, but every infinite well-order
R can be strictly extended under ≺ by removing the least element of the order and affixing
it to the end.
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of The Well-Ordering Principle((ee))—the ordering of ZF relations under ≤ has
a maximal element, contradicting Progress.

The inconsistency of our higher-order versions of Successor and Limit can
also be proven by Zorn’s lemma, but in this case there is also a more direct
method that is quite instructive. Suppose that R is a well-order of all the
individuals. By Successor, there is a well-order strictly extending R.27 But
there cannot be a strict extension, because all of the individuals have been
used up in the ordering of R—we cannot reuse an individual appearing in Rs
domain, for a well-order cannot contain a cycle. What is instructive about
this method of proof is that it illustrates the difference between the two ways
of ordering well-orders, ≤ and ⪯. While no well-order has R as a proper
initial segment, we can of course find a well-order that has as a proper initial
segment something isomorphic to R: simply remove Rs least element—an
operation that will leave Rs order type alone, provided R is infinite—and tag
it to the end of R to make a strictly longer well-order under ⪯.

We thus have a completely flatfooted articulation of the indefinite exten-
sibility of the notion of well-order and ZF relation, that does not require one
to deny the ability to quantify unrestrictedly, or to posit special mathematical
modalities according to which the length of the set theoretic hierarchy is con-
tingent. Indeed, our extensibility principles are consistent with the Fregean
principle of extensionality, which rule out any sort of contingency whatsoever
(this implication of extensionalism does, however, render it implausible as a
more general principle of higher-order logic).

What solace might Cantor or Zermelo draw from these consistency results?
Cantor calls the principle that it is ‘it is always possible to bring any well-
defined set into the form of a well-ordered set’ a law of thought—‘a law which
seems to me fundamental and momentous and quite astonishing by reason
of its general validity.’ 28 Zermelo too accepted Cantor’s principle, although
justified it from what he took to be a more basic principle, the axiom of choice,
saying that whenever you have some pairwise disjoint non-empty sets, there is
a set which contains exactly one element for each of those sets. Both of these
principles are principles about sets.

The higher-order well-ordering principle is stronger than this, since it im-
plies that even properties whose extensions do not form a set can be enu-
merated. Recall that Cantor, like Aristotle, maintained that some things are
absolutely infinite—they are together inconsistent in the sense that they can-

27Zermelo’s principles of ProgressWO and CompletionWO also imply every well-order can
be extended.

28Grundlagen §3.1, translated in Ewald (1996) p886.
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not be brought together into a whole ‘finished’ set, they are together were
‘beyond enumeration’.29 Earlier we suggested that Cantor sometimes applied
the expressions ‘can be finished’, ‘enumerable’, ‘countable’ and so on, to some
things when they could be listed, albeit possibly by a potentially infinite list
(i.e. a list that has no end).30 If some things cannot be brought into a set,
then they cannot be listed, not even by a list that goes on forever. On this
reading an absolutely infinite ‘inconsistent’ multiplicity is thus one that cannot
be well-ordered, so we may reject the well-ordering principle for things which
do not form a set.31

Since the Zermelian approach to indefinite extensibility is purely logical,
there is a question about whether we can make sense of this set-theoretic
criteria for when properties can be well-ordered in this setting. The idea
that only properties defined by sets need be well-orderable takes for granted
a particular property of sethood and corresponding membership relation ∈.
From Zermelo’s perspective there is nothing special about any particular ZF
relation, and so any principle that relies on a particular membership relation
could be deemed parochial. What we would like is a principle of pure higher-
order logic that ensures choice holds for any ZF relation.

Note, firstly, there are principles of pure logic that imply set-theoretic
choice. In the same way that we defined the higher-order predicate of relations,
ZF, in terms of the Zermelo-Fraenkel axioms, we can introduce the notion of
a ZFC relation, satisfying also the axiom of choice. Given the higher-order
well-ordering principle there is no difference between these relations:

Theorem 3.1. Given the Higher-Order Well-Ordering Principle, every ZF
relation is a ZFC relation.

For suppose that S is a global well-order, and that R is a ZF relation. We
will write ‘elementR’ for R ‘setR’ for dom(R). Suppose that x is a setR of
non-empty disjoint setsR. Then I can define the relevant choice setR by taking
the setR consisting of the S-least elementsR of each elementR of x.

The converse to this theorem need not hold. The claim that every ZF
relation is a ZFC relation does not imply the higher-order choice principles.
In fact, in the models described in section 4 every ZF relation is a ZFC relation

29See Hallett (1991) p150, Lavine (1994) Chapter III§4, Newstead (2009) p546.
30See his criticism of Aristotle in the Grundlagen, Ewald (1996) p889, also quoted below.

Note that the word ‘countable’ is not being used in the modern sense of being equinumerous
with the natural numbers.

31It should be noted, however, that Cantor in later writing sometimes does use the stronger
form of choice—for instance in his proof that if a multiplicity does not have an ℵ number,
then it is a inconsistent multiplicity, and does not form a set.
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but there is no global well-ordering of the universe. Thus we might consider
adding the following principle of higher-order logic to our existing Cantorian
principles:

Local Choice ∀(ee)R(ZFR → ZFCR)

Whether the picture we have outlined would ultimately be acceptable to
Cantor, or indeed Zermelo, is unclear. However the view does substantiate
several distinctively Cantorian ideas. First, we straightforwardly obtain from
our principles the thesis that every potential infinity can be completed —
∀(ee)R(WOR ∧ PotInf R → ∃(ee)S(WOS ∧ R ≤ S ∧ ¬PotInf S). Cantor en-
dorses principles like this when outlining his disagreements with Aristotle,
although he later has to walk them back on account of the apparent incom-
pletability of the potentially infinite series of ordinals.32 Against Aristotle, he
writes “determinate countings can be carried out just as well for infinite sets as
for finite ones, provided that one gives the sets a determinate law that turns
them into well-ordered sets. That without such a lawlike succession of the
elements of a set it cannot be counted–this lies in the nature of the concept
of counting.”33 This suggests that, at least in the näıve exegesis of his view,
the distinction between the countable and absolutely infinite multiplicities is
simply the distinction between being well-orderable and not. Of the latter,
Cantor mysteriously writes in the Grundlagen that we can “never achieve even
an approximate conception of the absolute”.34 Whatever this might mean, the
present view vindicates something in the vicinity: absolutely infinite totalities,
such as the totality of all individuals, cannot be approximated by a potentially
infinite series, for no well-ordered list spans every individual.

4 Logics of Zermelian Extensibility

In this section I outline some higher-order logics that formalize, in purely
logical terms, certain Zermelian theses about indefinite extensibility, and prove
they are consistent relative to a more standard mathematical theory.

Let’s begin by being a bit more precise about the language we have been
working in. As previously described, there is a type of singular terms, e,
and whenever σ1, ..., σn are types we also have a type, (σ1...σn) of n-ary rela-
tions between entities of these respective types. Terms are formed inductively:

32As noted in footnote 8, he was surely aware of the Burali-Forti paradox at the time of
the Grundlagen.

33Ewald (1996) p889.
34Ewald (1996) p916.

18



we have logical constants →, ⊥ and ∀σ of types (()()), () and ((σ)) respec-
tively, and an infinite stock of variables of each type. Given a term R of type
(σ1...σn...σn+m) and terms a1, ..., an of types σ1, ..., σn we can a complex term
of type (σn+1...σn+m) by application: Ra1...an. And given a term A of type
(σ1...σn) we and variable x0 of type σ1 we can form a complex predicate of
type (σ0...σn) by λx0.A. Common symbols, like ∧ and ∃σ, are introduced
by abbreviation—of particular note is the higher-order identity relation =σ of
type (σσ), which is defined as λxy.∀(σ)X(Xx → Xy).

A logic is just a set of sentences in this logical language that contains the
axioms PC, UI and βη below, and is closed under the rules MP and Gen.35

Following Bacon (2018) I’ll call the smallest such theory H.

PC All instances of propositional tautologies.

MP From A and A → B infer B

Gen From A → B infer A → ∀σλx.B when x does not occur free in A.

UI ∀σF → Ft (where t is a term of type σ)

βη A → B whenever A and B are βη equivalent terms of type t.36

We can now consider logics obtained by adding to H principles discussed
in the previous sections. They are not all independent of one another. For
instance the higher-order Limit principle in fact is already a theorem of H,
as noted in footnote 13. The higher-order Successor principle follows from
ProgressWO. We will thus focus on the following logics.

� HZ is the higher-order logic axiomatized by Progress and Completion.

� HZWO is axiomatized by ProgressWO and CompletionWO.

� We will use (LC) and (Ext) respectively to denote Local Choice and
the principle of Extensionalism, so that, e.g., HZ(LC) is HZ plus Local
Choice, and HZ(Ext) is HZ plus Extensionalism.

Extensionalism is the principle stating that proposition, properties and rela-
tions are individuated by coextensiveness.

Extensionalism ∀(σ1...σn)RS(∀σ1x1...∀σnxn(Rx1...xn ↔ Sx1...xn) → R =(σ1...σn)

S)

35If we wanted we could consider languages with non-logical constants, and distinguish
between a logic and a theory, but in the present language every theory is a logic.

36For the notion of βη-equivalence see, for instance, Bacon (forthcominga) chapter 3.
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It is not a plausible principle: it implies that all operators are truth-functional,
yet there appears to be plenty of genuine contingency. However, it is quite
strong and implies many principles of higher-order logic that do appear to
be desirable.37 So the consistency of any of the above with Extensionalism
implies the consistency with these principles.

We now proceed to establish the following theorem:

Theorem 4.1. HZ(LC)(Ext) and HZWO(LC)(Ext) are consistent relative to the
consistency of ZFC + “there are infinitely many inaccessibles”.

Our strategy is to develop a fairly standard ‘Henkin model’ for these log-
ics.38. A Henkin model is a type of set-theoretic entity, so the metalanguage
with which we will reason about these structures will be the language of first-
order set theory (i.e. first-order logic with a single non-logical predicate ∈)
with the axioms and axiom schemas of first-order ZFC and the assumption
that there are infinitely many inaccessibles. It’s worth here pausing on the
fact that in this section we do appear to operate with a distinguished relation
∈, contrary to the philosophical vision being pursued. But this appearance
can ultimately be dispensed with: once we have proven the consistency of,
say, HZ(LC)(Ext) in this theory, we may obtain a finitary proof of the condi-
tional ‘if ZFC+“there are infinitely many inaccessibles” is consistent, then so
is HZ(LC)(Ext)’.

We have argued above that HZ (and by extension any stronger logic) implies
the negation of The Well-Ordering Principle, and of the higher-order axiom of
choice. Thus the models we construct here must invalidate these higher-order
choice principles. Nonetheless, our construction of a Henkin model invalidating
these higher-order choice principles will be elementary. This is in stark contrast
to the situation in standard set theory, where one must undertake much more
involved model theoretic constructions in order to invalidate choice, such as
Cohen’s method of forcing.39

Let’s start with the promised notion of a Henkin model.

Definition 4.1 (Henkin Structure). A Henkin structure D· is a type indexed
collection of sets, Dσ for each type σ, subject to the constraint:

D(σ1...σn) ⊆ P (Dσ1 × ...×Dσn)

37See the principles discussed in section 2 of Bacon and Dorr (forthcoming).
38Henkin (1950)
39If it seems surprising that we can invalidate choice without forcing, it’s worth remem-

bering that in the context of ZFCU—where we allow impure sets—we can construct models
in which choice fails straightforwardly for sets containin urelements. See Fraenkle (1922).
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A structure is full iff this inclusion is always an identity.

Define ff = ∅ and tt := {()}.
Note we could adopt a convention of identifying a unary product of D with

itself, or else we D(σ) is a set of sets of singleton sequences from Dσ have to
continually distinguish {a} and {(a)}.

A variable assignment for a Henkin structure is a function, g, defined on
variables mapping variables of type σ to elements of Dσ.

Definition 4.2 (Henkin Model). A model is a pair (D·, J·K·) where D· is a
Henkin structure and J·K· is a function taking a term of higher-order logic and
a variable assignment as arguments such that

� JMKg ∈ Dσ for every term M of type σ.

� JxKg = g(x) for every variable x.

� JMNKg = {(a1, ..., an) | (JNKg, a1, ..., an) ∈ JMKg}

� Jλx.MKg = {(a1, ..., an) | (a2, ..., an) ∈ JMKg[x 7→a1]}

� J∀σKg = {Dσ}

� J∧Kg = {(tt, tt)}

� J¬Kg = {(ff)}

A sentence, A, is true in a model relative to g iff JAKg = tt

Henkin (1950) shows in essence that every sentence of H(Ext) is true in
every Henkin model.

Note that not every Henkin structure can be extended to a Henkin model.
The structure may fail to contain the interpretations of the logical constants
(the final three conditions) or be closed under the operations that correspond to
application and λ-abstraction (the second and third). If the structure is closed
under these operations, then constraints in definition 4.2 can be reinterpreted
as an inductive definition of J·K. If a Henkin structure D can be extended to
a model (D, J·K) then that model is unique, so we will often simply refer to
these Henkin structures as models.

Below is a method for constructing Henkin models.

Definition 4.3 (Permutations). Let π : De → De be a permutation. π may be
extended to arbitrary elements of the full premodel based on on De as follows.

� πe = π
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� πt = id

� π(σ1...σn)R = {(πa1, ..., πan) | (a1, ..., an) ∈ R}

An element a ∈ Dσ is fixed by π iff πa = a

By a straightforward induction, one can show that (π−1)σ is an inverse
of πσ, so that πσ is a permutation of Dσ for each type σ. Since there is no
difference between (π−1)σ and (πσ)−1, will henceforth omit superscripts from
permutations, letting them be determined by context. It follows that a is fixed
by π iff it is fixed by π−1, since if πa = a then π−1πa = π−1a and so a = π−1.

A full Henkin model equipped with the full set of permutations is a substi-
tution structure in the sense of Bacon (2019). Substitution structures admit
the following useful notions:

Definition 4.4 (Metaphysical definability). Let D be a full Henkin structure.
Let X ⊆

⋃
σ D

σ be some collection of relations. Say that a ∈ Dσ is metaphys-
ically defined from X, or ‘fixed by X’, iff every permutation that fixes every
element of X also fixes a.

Definition 4.5 (Directness). Let D be a full Henkin structure. Say that X ⊆⋃
σ D

σ is directed iff, for any R and S in X, there exists at T ∈ X such that
T fixes R and S.

The next result tells us that from any full Henkin structure, D, and any
directed collection of its elements, X, we can form another Henkin structure
D/X that can support a model. In fact, the application for which we need this
theorem, the Henkin model D/X can be described a bit more simply. How-
ever, the general technique is very useful for generating models with various
properties where second-order choice fails, so I state the more general theorem.

Definition 4.6. Let D be a full Henkin structure, and X a directed collection
of elements from D. Then the structure D/X is defined by setting (D/X)σ :=
{a ∈ Dσ

0 | a is fixed by some element of X}.

Theorem 4.2. D/X is a Henkin model.

Proof. We will show by induction that for every term M , JMKg is defined for
every assigment g, and that there exist a R ∈ X such that for every π fixing
R and every assignment g, JMKπ◦g = π(JMKg).40

40A little more precisely, we are showing by induction on complexity that there is a partial
function satisfying the clauses of definition 4.2 for all expressions of that complexity. The
union of these partial functions clearly satisfies the conditions for all expressions.
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It is easily checked that J∀σK, J∧K and J¬K are all fixed by every permu-
tation and are independent of the assignment. Clearly for variables, πJxKg =
π(g(x)) = JxKπ◦g. It remains to show that J·K can be extended inductively to
application terms and λ-terms.

Let us suppose that M and N satisfy the inductive hypothesis, witnessed
respectively by R and S in X. Suppose that T m-defines both R and S, so that
for any π fixing T , JMKπ◦g = π(JMKg) and JNKπ◦g = π(JNKg). We will show
that if π fixes T , then for every assignment g, JMNKπ◦g = π(JMNKg). That is,
we must show {(a1, ..., an) | (JNKπ◦g, a1, ..., an) ∈ JMKπ◦g} = {(πa1, ..., πan) |
(JNKg, a1, ..., an) ∈ JMKg}. We begin with the right to left inclusion. Any tuple
in the right-hand-side is of the form (πa1, ..., πan) where (JNKg, a1, ..., an) ∈
JMKg. Then by the way πJMKg is defined, (πJNKg, πa1, ..., πan) ∈ πJMKg.
Since πJMKg = JMKπ◦g and πJMKg = JMKπ◦g, we have that (JNKπ◦g, πa1, ..., πan) ∈
JMKπ◦g giving us the right-to-left inclusion. For the other inclusion, we may
use the previously noted fact that π−1 also fixes T , so that we may ap-
ply the inductive hypothesis, using π−1 as the permutation, and π ◦ g as
the assignment, to obtain the identities JMKg = π−1JMKπ◦g and JNKg =
π−1JNKπ◦g. Now we reason as before: if (JNKπ◦g, a1, ..., an) ∈ JMKπ◦g, then
(π−1JNKπ◦g, π−1a1, ..., π

−1an) ∈ π−1JMKπ◦g, and using the two identities we
obtained from the inductive hypothesis, (JNKg, π−1a1, ..., π

−1an) ∈ JMKg. So
(ππ−1a1, ..., ππ

−1an), that is (a1, ..., an), belongs to the right-hand-side.
We may now show that JMNKg is defined for every assignment g — i.e.

that the third clause from definition 4.2 defines an element of D. Let g be an
arbitrary assignment. Using directedness find an R ∈ X that m-defines T and
g(x) for every x appearing in MN . Now by the above JMNKπ◦g = πJMNKg.
But JMNKπ◦g = JMNKg since πg(x) = g(x) for every x appearing in MN .

Now suppose the inductive hypothesis holds for M . So there is some
T ∈ X such that that for every permutation π fixing T and every assign-
mente g, JMKπ◦g = πJMKg. We will show that for every π fixing T and
assignment g, Jλx.MKπ◦g = πJλx.MKg. If a tuple is in the right-hand-side
it is of the form (πa1, ..., πan) where (a2, ..., an) ∈ JMKg[x 7→a1]. So as before
(πa2, ..., πan) ∈ πJMKg[x 7→a1] which = JMKπ◦(g[x 7→a1] by the inductive hypoth-
esis, which = JMK(π◦g)[x7→πa1]. So (πa1, ..., πan) ∈ Jλx.MKπ◦g as required. As
before we may also reverse this reasoning, by using the fact that π−1 alse fixes
T .

The argument that Jλx.MKg is well-defined is identical to the argument for
MN .

We now describe two examples that can be used to generate models of
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HZ and HZWO. Let κ be a limit of inaccessibles. Let D be the full Henkin
structure obtained by setting D = κ.

Example 4.1. We let <α be the ordering of the ordinals restricted to the
ordinal α < κ. The set X1 = {<α| α < κ} forms a directed set, since <α

m-defines <β whenever α ≥ β.

For the second example we let D = Vκ (in fact this same domain could be
used in the first example).

Example 4.2. Let ∈α be the membership relation restricted to the sets of rank
α (i.e. ∈ ∩Vα). X2 = {∈α| α < κ} is directed, since ∈α m-defines

Theorem 4.3. For i = 1, 2, a relation R ⊆ Dσ1×...×Dσn is in (D/Xi)
σ1×...×σn

iff, for some α < κ, every permutation that is the identity restricted to α (resp.
Vα) fixes R.

Proof. A permutation π fixes <α iff π ↾α is the identity. This is because there
are no non-trivial automorphisms of well-orders. Similarly, π fixes ∈α iff π ↾α
is the identity, because there are no non-trivial automorphisms of Vα.

We prove the latter by ∈-induction. Assume that πy = y for all y ∈ x.
The members of πx are of the form πy for y ∈ x, so πx = x by extensionality.
The former can be proved similarly by transifinite induction.

It follows that the models obtained from X1 and X2 are essentially the
same. In fact, given choice in the metalanguage κ and Vκ have the same size.

It will be convenient in what follows to say that an element of D/X1 (or
D/X2) is ‘pinned down’ by λ iff every permutation that is identity on λ (Vλ

respectively) fixes that element.

Theorem 4.4. M = (D/X1, J·K) is a model of HZWO(LC)(Ext). M ′ = (D/X2, J·K)
is a model of HZ(LC)(Ext).

Proof. As noted H(Ext) is validated in any Henkin model. It remains to show
Progress, Completion and Local Choice are true inM . We treat these in order.

Progress: Suppose that R ∈ (D/X1)
(e,e) is a (well-order of inaccessible

order type)M . Then R must in fact be a well-order (indeed an inaccessible
well-order), for there must exist some α < κ such that R is fixed by every
permutation that is the identity on α. Thus Dom(R) ⊆ α. Moreover, every
subset of α is in (D/X1)

(e) for a similar reason, so that the second-order
quantifiers in the claim that R is a (well-order of inaccessible order type)M are
essentially unrestricted, so R is in fact a well-order of inaccessible order type.
Since κ is a limit of inaccessibles, there is an inaccessible, λ < κ, of greater
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order type than R, and using choice we may pick an R′ ⊆ κ × κ containing
R with Dom(R′) ⊆ λ such that R has order type λ. R′ is pinned down by λ
because it is a subset of λ, so R′ is in (D/X1)

(e,e). Moreover, as with R, we
can see that R′ (well-order of inaccessible order type)M iff it is a well-order of
inaccessible order type (which it is). Thus we have shown that any inaccessible
well-order of M is a proper initial segment of another inaccessible well-order
of M . So M is a model of ProgressWO.

Completion: Now suppose that X ∈ (D/X1)
((e,e) is a set of (well-orders)M

that are (linearly ordered by the initial segment relation)M , and that X is
pinned down by λ. We show that for every R ∈ X, dom(R) ⊆ λ. Suppose
not, and a ∈ dom(R) \ λ. Let π be a transposition that fixes λ and swaps a
with some element b also outside of λ. Since π fixes X and R ∈ X, πR ∈ X,
and since X is linearly ordered then either πR is an initial segment of R or R is
an initial segment of πR. Thus dom(R) ⊆ dom(πR) or dom(πR) ⊆ dom(R).
Of course, a ∈ dom(R) and πa = b ∈ dom(πR), so that either a and b
both belong to dom(R) or to dom(πR). Without loss of generality suppose
the former. Since R is linear either (a, b) ∈ R or (b, a) ∈ R, in which case
(b, a) ∈ πR or (a, b) ∈ πR respectively, and either case is impossible given
than one is an initial segment of the other (and both are asymmetric orders).

So
⋃

X ⊆ λ, and is a well-order. Since λ < κ there is an inaccessible, γ,
between λ and κ and we may extend

⋃
X to a well-order, S, of inaccessible

order-type whose domain is γ and is thus pinned down by γ.
Local Choice: Suppose that R ∈ (D/X1)

(e,e,) is a ZFM relation, and is
pinned down by λ < κ. By the same sort of reasoning the domain of R is
contained in λ, and thus R is a ZF(C) relation iff it is a ZF(C)M relation, by
the fact that the second-order quantifiers in M range over all subsets of the
domain of R. Since R is thus a ZF relation, it is isomorphic to Vγ for some
inaccessible γ by Zermelo’s theorem (Zermelo (1930)), and since Vγ is a ZFC
relation (by the axiom of choice), R is a ZFC relation too, and finally a ZFCM

relation.
The proof (D/X2, J·K) is a model of HZ(LC)(Ext) is essentially the same so

I do repeat it here.

5 Can the First-order Reflect the Higher-order?

The principles formulated and discussed in the previous sections are formulated
in pure higher-order logic, and do not concern any sort of abstract mathemati-
cal objects. Cantor, Frege and many others since have posited special abstract
individuals that, to some extent, reflect the structure of the higher-order and
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constitute the subject matter of mathematics. For Cantor these included trans-
finite numbers and cardinals which are abstracted from well-orders and sets
respectively. But the more general question is: to what extent can special
purpose mathematical objects represent the structure of the higher-order?

In contemporary philosophy of mathematics this question has most com-
monly taken the form ‘when do some things form a set?’, but the general issue
is of longstanding significance. According to our analysis, Aristotle’s rejection
of completed infinities is an instance of this general issue—the higher-order
claim ∃(ee)RPotInf R entails the existence of an infinite series of individuals
standing in the part-whole relation to one another, but not of any single infinite
individual reflecting in its part-whole structure of the higher-order entity <p.
Cantor too was preoccupied with the question of when ‘a many can be thought
of as one’—when a higher-order property corresponds to a single individual, a
set, when a higher-order well-order can be assigned an individual representing
its order-type, and so on.41 We found Cantor’s answer to the set formation
question—some things form a set when they can be enumerated—to be cir-
cular if by ‘enumerated’ we mean well-ordered and assigned a special sort of
individual, a transfinite number, to represent its order-type. While this claim
plausibly comes out true in the standard framework of ZF—relative to a par-
ticular membership relation— given the availability of other ZF relations that
answer the set-formation question differently, we are still lacking an explana-
tion for why some properties define a set, and not others.42 Other ZF relations
may count more or fewer properties as defining a set, and we have no guarantee
that there is a single ‘maximal’ ZF relation that counts as set-making those
properties defining a set according to some ZF relation or other.43 In section 3
we considered a more straightforward interpretation of ‘enumerable’, found in
Cantor’s earlier writings: being well-orderable. According to this theory some
things form a set when one can list them, in a well-ordered fashion, in such
a way that every element will appear somewhere in the list—every potential
infinity can be considered as a finished thing. This answer seems more in

41‘By an aggregate we are to understand any collection into a whole M of definite and
seperate objects of our intuition or of our thought.’ §1 p85 of Cantor (1915). Or, similarly,
‘many, which can be thought of as one, i.e., a totality of definite elements that can be
combined into a whole by a law.’ (translation from Boolos (1971) p215).

42In second-order ZF, if some pure sets, X, are well-ordered by R which is isomorphic
to the ordinal ≤ α, then there is a one-to-one correspondence, S, between the ordinals less
than or equal to α and X; since the former is a set, the axiom of replacement lets us infer
that the range of S is too. One has to be a little careful here, since the standard version of
ZFC doesn’t posit any impure sets, so that even singletons of non-sets will fail to form sets.
Here I simply interpret the question of when some pure sets form a single set.

43Even assuming higher-order choice.
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keeping with the interpretation of the absolutely infinite as not well-orderable
suggested at the end of section 3. But unfortunately the resulting set theory
is also inconsistent. The argument is not entirely obvious, so I relegate it to
an appendix, but roughly speaking the von Neumann ordinals are provably
well-ordered in this set theory and we can derive the Burali-Forti paradox.

Let us then consider a different idea: we do not need to posit special
purpose individuals to represent the higher-order and to be the subject matter
of mathematics, we can simply reason about the higher-order directly and then
find some way to interpret mathematics in higher-order logic, by replacing
each mathematical statement with a suitable sentence of pure higher-order
logic. The most flatfooted account would be to paraphrase a mathematical
statement A—let’s say, a sentence of ZF—with the purely logical sentence
∀(ee)R(ZFR → A[R/ ∈]).44

If this is to be viable, our higher-order logic must at least contain the princi-
ple that there’s at least one ZF relation, for otherwise these paraphrases would
be vacuously true (and thus, so would their negations!). There’s one sense in
which this higher-order commitment is quarantined from the first-order realm.
The resulting logic is conservative over the logical sentences of first-order logic
that we already had (non-mathematical) reason to believe in: apart from the
theorems of classical first-order logic, it implies, for each n, the claim that
there are at least n things, ∃nx x = x, which we already had reason to believe
in—there are at least n space-time regions. But once we move beyond purely
logical matters, and start asking questions involving non-logical predicates
we confront many awkward questions. For instance, once we have renounced
special purpose abstract objects to reflect the higher-order, shouldn’t (or at
least, couldn’t) everything be concrete? But ∃(ee)RZFR implies that there
are far more individuals than, for instance, regions of space-time, according
standard theories of space-time.45 Arguably there must be more individuals
than there are concrete things more generally.46 And so, at least in this re-
spect, the higher-order perspective is in the same boat as the standard view
about mathematical objects—they exist, and there are lots of them. There
are, however, some important differences. One central difficulty for standard
platonism concerns how we secure reference to particular mathematical ob-

44ZF ∈ guarantees ∃(ee)RZFR, and Zermelo’s quasi-categoricity theorem ensures the
paraphrase always has the same truth value as the original sentence.

45‘Far more than’ is a notion which can be spelled out in terms of higher-order quantifi-
cation; see footnote 24.

46Note that certain plenitudinous views about material constitution do posit enough con-
crete individuals for the truth of ∃(ee)RZFR. See for instance Dorr et al. (2021).
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jects, like ∅, when we do not have any sort of causal contact with them.47 The
present view posits lots of mathematical objects, but is compatible with the
view that these objects are all indistinguishable from one another and cannot
be referred to uniquely (except, perhaps, by radically indeterminate names).
Any mathematical role that can be played by any one of these individuals can
be played by any other.

Nonetheless, once we have granted that there is at least one ZF relation
a host of further question seem to dangle. The mere existential is compatible
with there being there being, say, exactly five ZF relations up to isomorphism,
or with there being some other number. Questions like these arise because
it seems there must be a brute fact about how many mathematical objects
there are. And these questions seem awkward because they have a feeling of
arbitrariness to them: if the number of individuals is the fifth inaccessible, one
might wonder why it wasn’t the fourth, or the sixth? Corresponding questions
about physical objects feel less troublesome—there the physical sciences offer
guidance, and the answers are at any rate contingent so there are no apparent
brute necessities concerning how many things there are.

The Zermelian logics we have developed in this paper seem well placed to
remove these dangling questions, not by answering them but rejecting their
presuppositions. The ZF relations are indefinitely extendible, so there is no
question of a biggest ZF relation. And there is no answer to the question ‘how
many things are there’ when the universe is not well-orderable. We can still
make comparisons of size between the universe and other things, but the ‘size’
of the universe does not occupy some arbitrary position on a linear scale, like
the ordinals.48

Another option would be to adopt a modal paraphrase of mathematical
statements, as championed in Hellman (1989).49 Now a ZF sentence A can
be paraphrased as 2∀(ee)R(ZFR → A[R/ ∈]). Here we no longer have to
posit any distinctively mathematical objects, or brute facts about how many
mathematical individuals there are. We only need to posit the possibility of

47Benacerraf (1965).
48There is another sense in which the question ‘how many things are there’ might not

have an answer: the cardinality of the universe may not be expressible in pure higher-order
logic (after all, only countably many cardinalities can be expressed in a countable language).
But this does not mean that the question has no answer—it just means that one cannot
express it in a certain language. If the universe was well-orderable, then the question could
be answered in more expressive languages containing primitive cardinality quantifiers for
the size of the universe (and if the universe wasn’t well-orderable then such a cardinality
quantifier couldn’t be introduced semantically, and such languages would presumably not
exist).

49Following Putnam (1967).
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a sufficient number of things, concrete or otherwise. Hellman suggests that
the 2 here should be interpreted as a logical modality. (Understanding the
possibility in this claim in terms of Kripke’s notion of ‘metaphysical’ possibil-
ity introduces a number of distracting questions that I’d rather circumvent—
needless to say, the matter is more fraught.) Taking the linguistic notion of
logical consistency as our guide to logical possibility, the assumption that there
could have been a ZF relation is modest. The consistency of first-order ZF is
certainly still an assumption here, but it is completely uncontentious among
set theorists. More contentious is the idea that there is a propositional no-
tion of logical possibility at all. While we have several reasonable accounts of
the notion of a logically consistent sentence, some might argue that there is
nothing that stands to reality as logical consistency stands to language. While
I myself agree with the general concern that one must tread carefully when
introducing a propositional notion in the vicinity of a linguistic one, I believe
that the notion of logical necessity can be put in good standing in higher-order
logic, with suitable axioms ensuring that the operator notion behaves like the
logical one. It would take me too far afield to develop a proper defence of this
here.50 It is worth noting, however, that in certain logics for logical necessity,
the claim 3∃(ee)RZFR is in fact a theorem, and so the non-vacuity of mathe-
matical claims fall out of the logic of logical necessity rather than as a special
mathematical posit.51

50I have undertaken this elsewhere [ANON].
51In [ANON] the authors consider adding to a certain higher-order logic, Classicism, a

schema that would have 3∃(ee)RZFR as an instance if first-order ZFC were consistent (as
widely assumed). At present my favoured theory of logical necessity is a schema containing
all sentences of the form 3A where A is a closed sentences of higher-order logic that has a
certain sort of set theoretic model. There is a concern here that to specify the instances of
the schema one has to already assume a platonistic set-theory, or at least the non-vacuity
of a suitable higher-order paraphrase of a platonistic set theory. Perhaps that is the order
of understanding needed for a contemporary logician already familiar with ZFC to arrive
at the statement of the schema, but it need not be the order of things in any deeper sense.
Zermelo once objected to Skolem’s reformulation of his single higher-order separation axiom
as a first-order schema on the grounds that to know what a wff, and thus an instance, is,
one has to already have the notion of a finite number in order to know which sentences are
formable from the constants by a finite number of applications of the formation rules, and
this was not available prior to understanding set-theory itself. These days, few would agree
with Zermelo that first-order ZFC (or ever first-order Peano arithmetic) is an inadequate
foundation for the theory of finite numbers on these grounds.
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6 Appendix: The Inconsistency of a Canto-

rian Criteria of Set Formation

In this appendix I show that the theory one gets by formalizing Cantor’s
account of set formation is subject to the Burali-Forti paradox. However here
the argument is somewhat less obvious, so it should be presented it in detail.
The theory inspired by the Grundlagen may be axiomatized as follows

Extensionality ∀exy(∀ez(z ∈ x ↔ z ∈ y) → x =e y).

Well-Ordered Comprehension ∀(ee)R(WOR → ∃ex∀ey(y ∈ x ↔ DomRy)

Let us define a von Neumann ordinal as a transitive set that is well-ordered
by ∈:52

Ordα := (∀x(x ∈ α → x ⊆ α) ∧WOλxy(x ∈ y ∧ y ∈ α)

We can then show that the von Neumann ordinals are well-ordered by ∈, and
thus form a set by Well-Ordered Comprehension. The argument that the von
Neumann ordinals are well-ordered is not at all new, but it needs to be checked
that it can be carried out in the present set theory.

We begin by showing that von Neumann ordinals are linearly ordered. Let
Lemma (a) be the claim that if α and β are ordinals and α is a proper subset
of β then α ∈ β.53 let Lemma (b) be the claim that if α and β are ordinals
then the set of things belonging to both, α ∩ β, exists and is an ordinal.54

We now see that von Neumman ordinals linearly ordered, for suppose that
α and β are ordinals, and α ̸= β. So α∩ β is an ordinal by Lemma (b), and is
a proper subset of α or of β. Without loss of generality, we assume the former.
Then by Lemma (a) α∩β ∈ α. Now α∩β cannot also be a proper subset of β.

52von Neumann (1923).
53It is proved by noting that by Extensionality there is at least one member of β not in

α, and so there must be a least such element, x, under membership since β is well-ordered.
If y ∈ x then y ∈ β, since β is transitive, and so y ∈ α or else x would not be the ∈-least
element of β not in α. Conversely if y ∈ α then y ∈ β, since α ⊆ β. Since β is linearly
ordered by ∈, either y = x, x ∈ y or y ∈ x. y can’t be the same as x, since x /∈ α. Nor can
x belong to y, because otherwise x would again belong to α by the transitivity of α and the
fact that y belongs to α. Thus y ∈ x. So x and α have the same elements, and are identical
by Extensionality. Since x ∈ β, α ∈ β.

54If all Xs belong to both α and β, then there is an ∈-least X in α, since α is well-ordered
by ∈. Similarly, if x and y belong to both α and β, then either x = y, x ∈ y or y ∈ x by
the fact that α is well-ordered. So by Well-Ordered Comprehension, there is a set of things
belonging to both α and β. It is of course well-ordered by ∈, as we have just seen. And it
is transitive, by the transitivity of both α and β, so α ∩ β is an ordinal.
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For otherwise, by Lemma (a) it is an element of β, and it is already an element
of α, in which case α∩β ∈ α∩β contradicting the fact that the elements of α
(which includes α ∩ β) are well-ordered by membership. So β ⊆ α ∩ β — the
other inclusion is clear, so β = α ∩ β ∈ α. In the case that α ∩ β is a proper
subset of β we reason analogously, and conclude α ∈ β. So Ord is linearly
ordered.

Von Neumann ordinals are also well-ordered by ∈. Suppose that all Xs
are ordinals and α is X. If α is not already the ∈-least X, then there is at
least one β ∈ α that is X, and so a ∈-least β ∈ α that is X. If γ is also an X
ordinal, then γ /∈ β, for otherwise γ ∈ α by the transitivity of α, contradicting
the assumption that β was the ∈-least element of α that was X. So either
γ = β or β ∈ γ, by the fact that ∈ linearly orders the Xs.

References

Andrew Bacon. The broadest necessity. Journal of Philosophical Logic, 47(5):
733–783, 2018. doi: 10.1007/s10992-017-9447-9.

Andrew Bacon. Substitution structures. Journal of Philosophical Logic, 48(6):
1017–1075, 2019. doi: 10.1007/s10992-019-09505-z.

Andrew Bacon. A Philosophical Introduction to Higher-Order Logics. Rout-
ledge, forthcominga.

Andrew Bacon. A case for higher-order metaphysics. In Peter Fritz and
Nicholas K. Jones, editors, Higher-order Metaphysics. forthcomingb.

Andrew Bacon and Cian Dorr. Classicism. In Peter Fritz and Nicholas K.
Jones, editors, Higher-order Metaphysics. Oxford University Press, forth-
coming.

Paul Benacerraf. What numbers could not be. Philosophical Review, 74(1):
47–73, 1965. doi: 10.2307/2183530.

George Boolos. The iterative conception of set. Journal of Philosophy, 68(8):
215–231, 1971. doi: 10.2307/2025204.

George Boolos. Saving frege from contradiction. Proceedings of the Aristotelian
Society, 87:137–151, 1987. doi: 10.1093/aristotelian/87.1.137.

31



Georg Cantor. Grundlagen einer allgemeinen mannigfaltigkeitslehre (1883). G.
Cantor: Gesammelte Abhandlungen mathematischen und philosophischen
Inhalts (hg. v. E. Zermelo), Berlin, 1883.

Georg Cantor. Contributions to the Founding of the Theory of Transfinite
Numbers, volume 45. Dover Publications, 1915.

Cian Dorr, John Hawthorne, and Juhani Yli-Vakkuri. The Bounds of Possi-
bility: Puzzles of Modal Variation. Oxford: Oxford University Press, 2021.

William Bragg Ewald. From Kant to Hilbert: A Source Book in the Founda-
tions of Mathematics. Oxford University Press, 1996.

Abraham Fraenkle. The notion of “definite’ and the independence of the axiom
of choice. In Jean van Heijenoort, editor, From Frege to Gödel: A Source
Book in Mathematical Logic, 1879-1931, pages 284–289. Harvard University
Press, 1922.

Michael Hallett. The philosophy of set theory: An historical introduction
to cantor’s paradise. Philosophical Quarterly, 41(163):238–242, 1991. doi:
10.2307/2219596.

Geoffrey Hellman. Mathematics Without Numbers: Towards a Modal-
Structural Interpretation. Oxford, England: Oxford University Press, 1989.

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81–91, 1950. doi: 10.2307/2266967.

Shaughan Lavine. Understanding the Infinite. Cambridge, MA and London:
Harvard University Press, 1994.

Jonathan Lear. Xii*–aristotelian infinity. Proceedings of the Aristotelian So-
ciety, 80(1):187–210, 1980. doi: 10.1093/aristotelian/80.1.187.

Øystein Linnebo. The potential hierarchy of sets. Review of Symbolic Logic,
6(2):205–228, 2013. doi: 10.1017/s1755020313000014.

Øystein Linnebo and Stewart Shapiro. Actual and potential infinity. Noûs, 53
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